www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - tot.Differential & Elastizität
tot.Differential & Elastizität < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

tot.Differential & Elastizität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:08 Sa 02.07.2011
Autor: Josh

Aufgabe
Bilden sie von den angegebenen Funktionen jeweils, sofern möglich:
alle ersten Ableitungen, alle zweiten Ableitungen, das totale Differential und die Elastizitäten

a) f(x)= -2/(x-1)²
b) f(x[mm]_{1}[/mm], x[mm]_{2}[/mm]) = [mm]-3x_{1}^2+6x_{1}^4x_{2}^3 + 4[/mm]

Hey Leute,

also mit den Ableitungen hab ich kein Problem

a)
f' = 4/(x-1)³
f'' = -12/(x-1)[mm]^4[/mm]

b)
f'(x1) = [mm]-6x_{1}+24x_{1}^3x_{2}^3[/mm]
f''(x1) = [mm]-6+72x_{1}^2x_{2}^3[/mm]
f' (x2) = [mm]18x_{1}^4x_{2}^2[/mm]
f'' (x2) = [mm]36x_{1}^4x_{2}[/mm]

stimmen die Ableitungen soweit?

Nur der Begriff totales Differential sagt mir gar nichts, was muss ich mit den beiden Funktionen tun? Und wie bilde ich die Elstizitäten?

Wäre nett, wenn ihr mir helfen könntet.

Gruss Josh


        
Bezug
tot.Differential & Elastizität: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Sa 02.07.2011
Autor: Martinius

Hallo,

> Bilden sie von den angegebenen Funktionen jeweils, sofern
> möglich:
>  alle ersten Ableitungen, alle zweiten Ableitungen, das
> totale Differential und die Elastizitäten
>  
> a) f(x)= -2/(x-1)²
>  b) f(x[mm]_{1}[/mm], x[mm]_{2}[/mm]) = [mm]-3x_{1}^2+6x_{1}^4x_{2}^3 + 4[/mm]
>  Hey
> Leute,
>  
> also mit den Ableitungen hab ich kein Problem
>  
> a)
>  f' = 4/(x-1)³
>  f'' = -12/(x-1)[mm]^4[/mm]
>  
> b)
>  f'(x1) = [mm]-6x_{1}+24x_{1}^3x_{2}^3[/mm]
>  f''(x1) = [mm]-6+72x_{1}^2x_{2}^3[/mm]
>  f' (x2) = [mm]18x_{1}^4x_{2}^2[/mm]
>  f'' (x2) = [mm]36x_{1}^4x_{2}[/mm]
>  
> stimmen die Ableitungen soweit?


Ja.


  

> Nur der Begriff totales Differential sagt mir gar nichts,
> was muss ich mit den beiden Funktionen tun?


Totales Differential von [mm] F(x_1,x_2): [/mm]

$dF [mm] \; [/mm] = [mm] \; \frac{\partial F}{\partial x_1}*dx_1 [/mm] + [mm] \frac{\partial F}{\partial x_2}*dx_2 [/mm] $


Und wie bilde

> ich die Elstizitäten?
>  
> Wäre nett, wenn ihr mir helfen könntet.
>  
> Gruss Josh
>  

Google ist dein Freund.


[guckstduhier]

http://statmath.wu.ac.at/~leydold/MOK/HTML/node103.html#SECTION04340000000000000000


http://de.wikipedia.org/wiki/Totales_Differential


LG, Martinius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]