www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Tangente an den Graphen
Tangente an den Graphen < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Tangente an den Graphen: Idee
Status: (Frage) beantwortet Status 
Datum: 13:37 Sa 28.03.2009
Autor: Burschid1

Aufgabe
Gegeben ist die Funktion f mit [mm] f(x)=(x^{2}+2x)*e^{-x} [/mm]

1. Die Tangente t an den Graphen der Funktion f im Punkt R(2 | f(2)) begrent mit den beiden Koordinatenachsen ein Dreieck. Bestimmen Sie diesen Flächeninhalt.

Hallo!
Ich hänge momentan an der oben genannten Aufgabe fest.
Meine Idee wäre es:
1. Den Schnittpunkt der Tangente mit der x- und y-Achse bestimmen.
2. Wenn die Grenzen bekannt sind würde ich integrieren und somit bekomme ich doch den Flächeninhalt oder?

Entscheident ist sicher die Funktionsgleichung der Tangente aufzustellen. Hoffe Ihr könnt mir dabei helfen.
Vielen Dank schonmal im Vorraus.

lg Isa


        
Bezug
Tangente an den Graphen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:55 Sa 28.03.2009
Autor: schachuzipus

Hallo Isa,

> Gegeben ist die Funktion f mit [mm]f(x)=(x^{2}+2x)*e^{-x}[/mm]
>  
> 1. Die Tangente t an den Graphen der Funktion f im Punkt
> R(2 | f(2)) begrent mit den beiden Koordinatenachsen ein
> Dreieck. Bestimmen Sie diesen Flächeninhalt.
>  Hallo!
>  Ich hänge momentan an der oben genannten Aufgabe fest.
>  Meine Idee wäre es:
>  1. Den Schnittpunkt der Tangente mit der x- und y-Achse
> bestimmen. [ok]
>  2. Wenn die Grenzen bekannt sind würde ich integrieren und
> somit bekomme ich doch den Flächeninhalt oder?

Hmm, es ergibt sich ja ein rechtwinkliges Dreieck, das je ein Koordinatenachsenstück als Seite hat. Die Seitenlängen bekommst du ja über die Schnittpunkte der Tangente mit den Achsen

Ich würde die normale Formel zur Berechnung des FI eines [mm] \triangle [/mm] nehmen. Du brauchst hier keine Integration.

>  
> Entscheidentd ist sicher die Funktionsgleichung der Tangente
> aufzustellen.

Ja, das stimmt wohl ;-)

> Hoffe Ihr könnt mir dabei helfen.

Nun, die Gleichung der Tangente im Punkt [mm] $(x_0,f(x_0))$ [/mm] an f hat allg. die Form:

[mm] $t_{x_0}(x)=f(x_0)+f'(x_0)\cdot{}(x-x_0)$ [/mm]

So, hier steht alles, was du brauchst.

Die Ableitung an der Stelle [mm] $x_0$: $f'(x_0)$ [/mm]

Den Funktionswert an der Stelle [mm] $x_0$: $f(x_0)$ [/mm]

Alles mit  [mm] $x_0=2$ [/mm]

Dann leg' mal los ...

>  Vielen Dank schonmal im Vorraus.

Bitte nur ein "r" !!

>  
> lg Isa
>  

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]