www.vorkurse.de
Ein Projekt von vorhilfe.de
Die Online-Kurse der Vorhilfe

E-Learning leicht gemacht.
Hallo Gast!einloggen | registrieren ]
Startseite · Mitglieder · Teams · Forum · Wissen · Kurse · Impressum
Forenbaum
^ Forenbaum
Status Mathe-Vorkurse
  Status Organisatorisches
  Status Schule
    Status Wiederholung Algebra
    Status Einführung Analysis
    Status Einführung Analytisc
    Status VK 21: Mathematik 6.
    Status VK 37: Kurvendiskussionen
    Status VK Abivorbereitungen
  Status Universität
    Status Lerngruppe LinAlg
    Status VK 13 Analysis I FH
    Status Algebra 2006
    Status VK 22: Algebra 2007
    Status GruMiHH 06
    Status VK 58: Algebra 1
    Status VK 59: Lineare Algebra
    Status VK 60: Analysis
    Status Wahrscheinlichkeitst

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Skalarprodukte" - Skalarprodukt überprüfen
Skalarprodukt überprüfen < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Skalarprodukt überprüfen: Skalarprodukt
Status: (Frage) beantwortet Status 
Datum: 18:52 So 12.08.2012
Autor: derneue123

Aufgabe
p = [mm] p2(x^2)+p1(x)+p0 [/mm]   und   q= [mm] q2(x^2)+q1(x)+q0 [/mm]

Zeigen Sie dass die Abbildung <. , . >: R<=2[x] X R<=2[x] --> R, <p,q>= p2*q0+p1q1+p0q2  kein Skalarprodukt auf R<= 2[x] ist.

Hallo,

ich habe die obige aufgabe als HA zu lösen. Weiß jedoch nicht, wie ich die Bedingungen der Skalarprodukte auf die Aufgabe anzuwenden habe.
Es wäre sehr nett wenn mir jemand unter die Arme greifen könnte.
Besten dank und Grüße

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Skalarprodukt überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:27 So 12.08.2012
Autor: Schadowmaster

moin,

Ein Skalarprodukt muss mehrere Eigenschaften erfüllen.
Als Beispiel mache ich mal die Symmetrie:
Es muss für alle $p,q [mm] \in \IR_{\leq 2}[x]$ [/mm] gelten:
[mm] $\langle [/mm] p,q [mm] \rangle [/mm] = [mm] \langle [/mm] q,p [mm] \rangle$ [/mm]
Haben $p,q$ die von dir angegebene Form so betrachten wir mal [mm] $\langle [/mm] q,p [mm] \rangle$: [/mm]
[mm] $\langle [/mm] q,p [mm] \rangle [/mm] = [mm] q_2p_0 [/mm] + [mm] q_1p_1 [/mm] + [mm] q_0p_2 [/mm] = [mm] p_2q_0 [/mm] + [mm] p_1q_1 [/mm] + [mm] p_0q_2 [/mm] = [mm] \langle [/mm] p,q [mm] \rangle$. [/mm]
Da $p,q$ absoult beliebig aus dem Vektorraum gewählt waren ist damit gezeigt, dass diese Abbildung symmetrisch ist.
Nun kannst du auf ähnliche Art und Weise versuchen die anderen Bedingungen nachzuweisen.
Bei (mindestens) einer wirst du Probleme bekommen, da könnte es dann ratsam sein ein Gegenbeispiel zu suchen.


lg

Schadow

Bezug
                
Bezug
Skalarprodukt überprüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:59 So 12.08.2012
Autor: derneue123

Aufgabe
Linearität

Danke für die schnelle Antwort, diese Überprüfungen habe ich gemacht jedoch kriege ich es mit der Linearität nicht so auf die reihe. Da habe ich anscheinend einen Denkfehler.
Hast du vielleich einen Ansatz, auf den ich vielleich aufbauen könnte?
beste Grüße


Bezug
                        
Bezug
Skalarprodukt überprüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Mo 13.08.2012
Autor: fred97


> Linearität
>  Danke für die schnelle Antwort, diese Überprüfungen
> habe ich gemacht jedoch kriege ich es mit der Linearität
> nicht so auf die reihe. Da habe ich anscheinend einen
> Denkfehler.
> Hast du vielleich einen Ansatz, auf den ich vielleich
> aufbauen könnte?

Folgt denn aus <p,p>=0 stets p= Nullpolynom ?

FRED


>  beste Grüße
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorkurse.de
[ Startseite | Mitglieder | Teams | Forum | Wissen | Kurse | Impressum ]